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Electronic voting

Elections are a security-sensitive process which
is the cornerstone of modern democracy

Electronic voting promises
I convenient, efficient and secure facility

for recording and tallying votes
I for a variety of types of elections : from

small committees or on-line communities
through to full-scale national elections

E-voting may include :

I use of voting machines in polling stations
I remote voting, via Internet (i-voting)
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Real-world Internet elections

Recent political legally binding Internet elections in Europe :
I parliamentary elections in Switzerland (several cantons)
I parliamentary election in Estonia (all eligible voters)
I municipal and county elections in Norway (selected

municipalities, selected voter groups)
I parliamentary elections in in France (“expats”)

But also banned in Germany, Ireland, UK

Even more professional elections
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Attacks !

Attacks by Alex Halderman and his team :

I attack on pilot project for overseas and military voters :
took control of vote server, changed votes, removed root kit
present on server, . . .

I Indian voting machines : clip-on memory manipulator
I Re-programmed e-voting machine used in US elections to play

pack-man

. . . and many more

There exist also attacks on paper based remote voting, e.g. attack
by Cortier et al. on a postal voting system used in CNRS elections
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Vote privacy

Anonymity of the vote :
no one should learn how I voted

We may want even more :

Receipt-freeness/coercion-resistance :
I cannot prove to someone else how I voted

 avoid vote-buying / coercion
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Election transparency

In traditional elections :
I transparent ballot box
I observers
I . . .

In e-voting : End-to-end Verifiability

I Individual verifiability : vote cast as intended
e.g., voter checks his encrypted vote is on a public bulletin board

I Universal verifiability : vote counted as casted
e.g., crypto proof that decryption was performed correctly

I Eligibility verifiability : only eligible votes counted
e.g., crypto proof that every vote corresponds to a credential

 Verify the election, not the system !
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The Helios e-voting protocol

Verifiable online elections via the Internet

http ://heliosvoting.org/

Already in use :
I Election at

Louvain University
Princeton

I Election of the
IACR board
(major association
in Cryptography)
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Behavior of Helios (simplified)

Phase 1 : voting

{vD}pk(S)−−−−−−−−−→

Bulletin Board
Alice {vA}pk(S) vA = 0 or 1
Bob {vB}pk(S) vB = 0 or 1
Chris {vC}pk(S) vC = 0 or 1

pk(S) : public key, the private key being shared among trustees.
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Phase 2 : Tallying using homomorphic encryption (El Gamal)

n∏
i=1

{vi}pk(S) = {
n∑

i=1

vi}pk(S) based on ga ∗ gb = ga+b

→ Only the final result needs to be decrypted !

pk(S) : public key, the private key being shared among trustees.
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This is oversimplified !

Bulletin Board
Alice {vA}pk(S) vA = 0 or 1
Bob {vB}pk(S) vB = 0 or 1
Chris {vC}pk(S) vC = 0 or 1
David {vD}pk(S)
... ...

Result : {vA + vB + vC + vD + · · · }pk(S)

In Helios : use Zero Knowledge Proof

{vD}pk(S),ZKP{vD = 0 or 1}
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Formal verification of critical systems

Applied to security protocols :

Does the system satisfy the property ?

qa

qb

qd

qc

|

verification
algorithm

yes/no

�∀z.(end(z) ⇒ begin(z))

Difficulties :
 arbitrary attacker controlling the network
 infinite state system

Techniques :
automated deduction, concurrency theory, model-checking, . . .

10 / 17



Formal verification of critical systems

Applied to security protocols :

Does the system satisfy the property ?

qa

qb

qd

qc| verification
algorithm

yes/no

�∀z.(end(z) ⇒ begin(z))

Difficulties :
 arbitrary attacker controlling the network
 infinite state system

Techniques :
automated deduction, concurrency theory, model-checking, . . .

10 / 17



Symbolic analysis

Symbolic techniques (following [Dolev&Yao’82]) :
I messages = terms

enc

pair

s1 s2

k

I perfect cryptography (equational theories)

dec(enc(x , y), y) = x fst(pair(x , y)) = x snd(pair(x , y)) = y

I the network is the attacker

Automated tools successfully found flaws in :
I Google’s Single Sign-On protocol
I ISO/IEC 9798 standard for entity authentication
I commercial PKCS#11 key-management tokens
I . . .
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Modelling properties and properties

Protocols modelled in a process calculus with terms, e.g. the
applied pi calculus

P ::= 0
| in(c , x).P input
| out(c , t).P output
| if t1 = t2 then P else Q conditional
| P || Q parallel
| !P replication
| new n.P restriction

Properties

A process P satisfies ϕ if for any process A

A || P |= ϕ
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How to model vote privacy ?

How can we model “the attacker does not learn my vote (0 or 1)” ?

I The attacker cannot learn the value of my vote

 but the attacker knows values 0 and 1

I The attacker cannot distinguish when we change the voter
identity : VA(v) ≈ VB(v)

 but identities are revealed

I The attacker cannot distinguish when change the vote :
VA(0) ≈ VA(1)

 but election outcome is revealed

I The attacker cannot distinguish the situation where two
honest voters swap votes :

VA(0) || VB(1) ≈ VA(1) || VB(0)

Also avoids the problematic case of unanimity !
[Kremer, Ryan ’05]
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Looking again at Helios

Bulletin Board
Alice {vA}pk(S) vA = 0 or 1
Bob {vB}pk(S) vB = 0 or 1

Chris {vA}pk(S)

Vote-copying attack :
copying Alice’s vote introduces a bias in the outcome

Weakness in Helios discovered when trying to prove the previous
definition of anonymity

[Cortier, Smyth ’11]
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Challenges for automated verification

Security proofs for e-voting protocols out of scope of existing tools.

I New properties : observational equivalence
Today : mature theory and verification tools for authentication
and confidentiality

 both theory and verification tools for equivalence properties
are still work in progress

I New crypto primitives : complex equational theories, e.g.
homomorphic encryption

enc(x1, r1, y) ∗ enc(x2, r2, y) = enc(x1 + x2, r1 × r2, y)

where ∗,×,+ are associative and commutative

 not (yet) supported by protocol verification tools

Warning : verified protocol 6= secure system !
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Conclusion

Some good systems exist

I Helios : anonymity and verifiability, but no coercion-resistance
Belenios : variant of Helios developed at LORIA

I Civitas : verifiability and coercion-resistance
I End-to-end verifiable election systems in polling stations :

Scantegrity, Prêt-à-Voter, . . .

Limitations

I Authentication in remote elections is based on credentials that
are transferrable

I Untrustworthy voting clients (malware)
I votes may be leaked
I software changing votes

 some mitigations exist, active research topic !

16 / 17



Thank
you
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