Should we use bibliometric indices

 to evaluate research?Denis Bouyssou
CNRS-LAMSADE

SPECIF Campus 2013
October 2013
(based on joint work with Thierry Marchant, Ghent University, Belgium)

If you do not know Thierry...

Outline

(1) Bibliometrics
(2) Model \& Results
(3) Discussion

Outline

(1) Bibliometrics

(2) Model \& Results
(3) Discussion

Academia

General context

- globalization
- knowledge economy
- financial and economic crisis

Academia

General context

- globalization
- knowledge economy
- financial and economic crisis

Impacts on academia

- budget cuts
- arrival of new players (China, India)
- increased mobility of staff \& students
- proliferation of evaluation \& funding agencies
- proliferation of indices \& rankings
- industrialization of academia

Industrialization of academia

Symptoms

- AERES $+\mathrm{LRU}+$ ANR + fusions of Universities + teaching in English + LESR
- students' demonstrations (Printemps érable \& UK) + students' debt crisis
- fraud \& plagiarism increase
- evaluation fever
- bibliometric indices everywhere

Bibliometrics

Two extreme positions
－bibliometrics is an absolute evil
－bibliometrics brings objectivity and fairness

Bibliometrics

Two extreme positions

- bibliometrics is an absolute evil
- bibliometrics brings objectivity and fairness

Thesis: both positions are plainly wrong!

Bibliometrics

Bibliometrics defined

- using mathematical and statistical techniques to study publishing and communication patterns

Bibliometrics

Bibliometrics defined

- using mathematical and statistical techniques to study publishing and communication patterns

The field of Bibliometrics

- active scientific field
- journals: Scientometrics, Journal of Informetrics, Journal of the American Society for Information Science and Technology, Research Policy, ...
- ISSI: International Society for Scientometrics and Informetrics
- regular International Conferences

Some research questions

- bibliometric laws: Lotka, Bradford
- social network of \{scientists, papers, fields\}
- efficiency of research policy of a country
- factors influencing transfer of knowledge towards industry
- which journals should libraries subscribe to?
- impact of open access on diffusion on knowledge
- strong and weak research fields of a country
- emerging fields

Journal of Economic Literature 2008 IF (3.65) (frequency of number of citations in 2008 to paper published in 2006-2007)

Map of 800 terms co-occurrencing in abstracts of OR journals (VOSviewer)

Map of ISI fields (VOSviewer)

Evaluative bibliometrics and bibliometric indices

Evaluative bibliometrics

- publications in journals are the central research output
- citations to publications are important signs of recognition
- the more publication \& citations you have the better
"bibliometrically limited view of a complex reality" (A. van Raan, 2005)

Evaluative bibliometrics and bibliometric indices

Evaluative bibliometrics

- publications in journals are the central research output
- citations to publications are important signs of recognition
- the more publication \& citations you have the better
"bibliometrically limited view of a complex reality" (A. van Raan, 2005)
- count publications \& citations
- summarize these counts by indices

Evaluative bibliometrics and bibliometric indices

Databases

- Web of Science (ISI, Thomson Reuters)
- Scopus (Elsevier)
- Google Scholar

Record publications and citations
Online uses during evaluation committees by often uninformed users

DB: 456 papers, 3464 citations, h-index $=27$

DB: 42 papers, 415 citations, h-index $=12$

Web of Science ${ }^{\text {B }}$

<< Back to previous page
Citation Report $\mathrm{AU}=$ (bouyssou d${ }^{*}$)
Timespan=All years. Databases=IC, SCl-EXPANDED, A\&HCl, $\mathrm{SSCl}, \mathrm{CPCl}-\mathrm{SSH}, \mathrm{CPCl}-\mathrm{S}$.
This report reflects citations to source tems indexed within Web of Science. Perform a Cited Reference Search to include citations to items not indexed within Web of Science.

Published Items in Each Year

The latest 20 years are displayed.
View a graph with all years.

Citations in Each Year

The latest 20 years are clisplayed.
View a graph with all years.

Sum of the Times Cited [?]: 415
Sum of Times Cited without self-citations [?]: 345

Citing Articles[?]: 288

Citing Articles without self-citations [?]: 262

Average Citations per Item [?]: 9.88
h-index[?]: 12

DB： 2929 citations，h－index $=27$

Changer de photo

Denis Bouyssou maditer
CNRS LAMSADE modifier aide à la décision－analyse multicritère modifier Adresse e－mail validée de lamsade dauphine fr modifier Mon profil est privé Modifier Ajouter une page daccueil

Citations		
	Toutes	Depuis 2008
Citations	2929	1317
indice h	27	17
indice i10	59	33

Titre／Auteur
Evaluation and Decision Models：A Critical Perpective
\ulcorner D Bouyssou
Kluwer Academic Pub
Building criteria：A prerequisite for MCDA
「 D Bouyssou 238

1990
Readings in multiple criteria decision aid，58－80
Some remarks on the notion of compensation in MCDM
I D Bouyssou 170

1986
European Joumal of Operational Research 26 （1），150－160
Evaluation and decision models with multiple criteria：Stepping stones for the
Γ analyst
D Bouyssou，T Marchant，M Pirlot，A Tsoukias，P Vincke
International Series in Operations Research and Management Science 86

Google scholar

Rechercher des auteurs
Mes citations－Aide

Ajouter les co－auteurs

Pirlot Marc	Ajouter－X
Silvano Martello	Ajouter－区
Roman Slowinski	Ajouter－区
Elke Weber	Ajouter－X
birger Wernerfelt	Ajouter－X
Philip M．Parker	Ajouter－X
Mousseau Vincent	Ajouter－区
José Rui Figueira	Ajouter－X
Miguel Couceiro	Ajouter－区

Co－auteurs

Aucun co－auteur

Nom
E－mail
Г Inviter un co－auteur
Envoyer une invitation

DB: 42 papers, 390 citations, h-index $=9$

Bouyssou, Denis

Personal	Find potentik
Name	Bouyssou, Denis
Other formats	Bouyssou, D.
Author ID	6701372324
E-mail	bouyssou@lamsade.dauphine.fr
Affiliation	CNRS Centre National de la Recherche Scientifique, Paris France
Research	
Documents	42 View Author Evaluator 1 Add to my list \| Set alert \| Bet feed
References	748
Citations	390 total citations by 272 documents View citation overview I Set alert
h Index	9 View h-Graph The h index considers Scopus articles published after 1995.
Co-authors	21
Web search	1028
Subject area	Decision Sciences Mathematics Social Sciences More...

A few words of warning

Databases

- cleaning is needed and not easy to do!
- spelling errors + incorrect citations
- names: diacritical signs, TEX ligatures, transliteration, homonyms (Martel in Québec, Park in Korea)
- correct affiliations are extremely difficult to determine
- counting: original articles, letters, notes, erratum, obituaries, reviews, editorials
- lost citations (up to 30\%)
- important differences between fields
- publication intensity
- citation intensity \& behavior
- longevity of papers (months vs decades)

Citation intensity for the 21 ISI categories

A few more words of warning

Science is not immune to social effects

- peer review has documented defects (tests / retests)
- motives for citation are diverse (negative citations, perfunctory citations)
- self citations and network effects
- manipulation of the JIF by editors

Humbolt \& Merton vs Bourdieu

A few more words of warning

Science is not immune to social effects

- peer review has documented defects (tests / retests)
- motives for citation are diverse (negative citations, perfunctory citations)
- self citations and network effects
- manipulation of the JIF by editors

Humbolt \& Merton vs Bourdieu

Nightmares

- how to deal with multiple authors (sometimes more than 1000)
- how to deal with multiple affiliations
- what is an author? (ghost authors, unequal contributions, ...)
- people react and adapt quickly: perverse effects are pervasive
- epistemology: normal science vs paradigm shifts (Kuhn)

Examples of papers with many authors

Papers with highest numbers of authors,
 by year, 2002-2011

Year	Paper	Number of authors
2011	ATLAS Collaboration (G. Aad, et al), "Search for quark contact interactions in dijet angular distributions in pp collisions at root $\mathrm{s}=7 \mathrm{TeV}$ measured with the ATLAS detector," Phys. Lett. $\mathrm{B}_{\text {, }}$ 694(4-5): 327-45, 2011.	3,179
2010	ATLAS Collaboration (G. Aad, et af), "Charged-particle multiplicities in pp interactions at root $s=900 \mathrm{GeV}$ measured with the ATLAS detector at the LHC ATLAS Collaboration," Phys. Lett. B, 688(1): 21-42, 2010.	3,221
2009	LIGO Sci. Collaboration, Virgo Collaboration (B.P Abbott, et al.), "An upper limit on the stochastic gravitational-wave background of cosmological origin," Nature, $460(7258)$: 990-4, 2009.	657
2008	CMS Collaboration (S. Chatrchyan, et af), "The CMS experiment at the CERN LHC," J. instrumentation, 3: No. S08004, 2008.	3,101
2007	CMS Collaboration (G.L. Bayatian, et a!), "CMS physic technical design report, volume II: Physics performance," J. Phys. G.-Nucl. Part. Phys.	2,011
2006	ALEPH, DELPHI, L3, OPAL, and SLD Collaborations (S. Schael, et al), "Precision electroweak measurements on the Z resonance," Phys. Reports, 427(5-6): 257-454, 2006.	2,517
2005	Antiretroviral Therapy Cohort Collaboration (D. Costagliola, et af), "Incidence of tuberculosis among HIV-infected patients receiving highly active antiretroviral therapy in Europe and North America," Clin. infect. Diseases, 41(12): 1772-82, 2005.	859
2004	MEGA Study Group (H. Nakamura, et al), "Design and baseline characteristics of a study of primary prevention of coronary events with pravastatin among Japanese with mildly elevated cholesterol levels," Circulation J., 68(9): 860-7, 2004.	2,459
2003	D. Acosta, et a!. (CDF II Collaboration), "Measurement of the mass difference M(D(s)(+))-m(D(+)) at CDF II," Phys. Rev. D, 68(7): No 072004, 2003.	818
2002	B. Aubert, et al. (BABAR Collaboration), "The EABAR detector," Nucl. instr. Meth. Phys. Res. Sect. A, 479(1): 1-116, 2002.	824

Bibliometric indices

Hypotheses

- all above problems have been taken care of
- you have a good verified and cleaned database

Many possible indices

- counting of papers
- counting of citations
- sum of Impact Factors
- Markovian indices (PageRank)
- h-index and its variants

Properties of Bibliometric indices

Bibliometric Indices

- what properties?
- how to compare them?
- how to combine them?

Properties of Bibliometric indices

Bibliometric Indices

- what properties?
- how to compare them?
- how to combine them?

Motivation

- choosing bibliometric indices should be a subject of scientific investigation
- this choice should not be in the hands of evaluation bureaucrats

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)
- author $f: 4$ papers with 4 citations each
- author g : 3 papers with 6 citations each
- $i_{h}(f)=4>i_{h}(g)=3$

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)
- author $f: 4$ papers with 4 citations each
- author g : 3 papers with 6 citations each
- $i_{h}(f)=4>i_{h}(g)=3$
- both authors publish a new paper with 6 citations
- $i_{h}\left(f^{*}\right)=4=i_{h}\left(g^{*}\right)=4$

Potential problems with the h-index (1/2)

Evaluation of authors

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)
- author $f: 4$ papers with 4 citations each
- author g : 3 papers with 6 citations each
- $i_{h}(f)=4>i_{h}(g)=3$
- both authors publish a new paper with 6 citations
- $i_{h}\left(f^{*}\right)=4=i_{h}\left(g^{*}\right)=4$
- both authors publish a new paper with 6 citations
- $i_{h}\left(f^{* *}\right)=4<i_{h}\left(g^{* *}\right)=5$

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)

Department $a=\left(a_{1}, a_{2}\right)$

- author $a_{1}: 4$ papers each one cited 4 times
- author a_{2} : 4 papers each one cited 4 times
- h-index of both authors is 4
- h-index of the department is 4

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)

Department $a=\left(a_{1}, a_{2}\right)$

- author $a_{1}: 4$ papers each one cited 4 times
- author $a_{2}: 4$ papers each one cited 4 times
- h-index of both authors is 4
- h-index of the department is 4

Department $b=\left(b_{1}, b_{2}\right)$

- author $b_{1}: 3$ papers each one cited 6 times
- author b_{2} : 3 papers each one cited 6 times
- h-index of both authors is 3
- h-index of the department is 6

Potential problems with the h-index (2/2)

Evaluation of authors and departments

- h-index
- the h-index of an author is x if this author x papers having at least x citations each (and her other papers have at most x citations each)

Department $a=\left(a_{1}, a_{2}\right)$

- author $a_{1}: 4$ papers each one cited 4 times
- author $a_{2}: 4$ papers each one cited 4 times
- h-index of both authors is 4
- h-index of the department is 4

Department $b=\left(b_{1}, b_{2}\right)$

- author $b_{1}: 3$ papers each one cited 6 times
- author b_{2} : 3 papers each one cited 6 times
- h-index of both authors is 3
- h-index of the department is 6
- the "best" department contains the "worst" authors!

Outline

(1) Bibliometrics

(2) Model \& Results
(3) Discussion

Model of Authors

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- $f(x)$ is the number of papers by this author having received x citations

Model of Authors

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- $f(x)$ is the number of papers by this author having received x citations

Set of all Authors

- \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$
\sum_{x \in \mathbb{N}} f(x) \text { is finite }
$$

Model of Authors

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- $f(x)$ is the number of papers by this author having received x citations

Set of all Authors

- \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$
\sum_{x \in \mathbb{N}} f(x) \text { is finite }
$$

Objective

- build a binary relation \succsim on \mathscr{A}
- $f \succsim g$ is "given their publication/citation record, scientists f is at least as good as scientist $g "$

Model of Authors

Authors

- an author is a function f from \mathbb{N} to \mathbb{N}
- $f(x)$ is the number of papers by this author having received x citations

Set of all Authors

- \mathscr{A} is the set of all functions f from \mathbb{N} to \mathbb{N} such that

$$
\sum_{x \in \mathbb{N}} f(x) \text { is finite }
$$

Objective

- build a binary relation \succsim on \mathscr{A}
- $f \succsim g$ is "given their publication/citation record, scientists f is at least as good as scientist g "

Important Limitation

- coauthors are ignored in this talk

Notation and remarks

Notation

- $\mathbf{0}$ is an author without any paper
- $\mathbf{1}_{x}$ is an author with 1 paper having received x citations

Notation and remarks

Notation

- $\mathbf{0}$ is an author without any paper
- $\mathbf{1}_{x}$ is an author with 1 paper having received x citations

Remarks

Authors are modelled as functions

- it makes sense to add two authors f and $g: f+g$
- it makes sense to multiply an author f by an integer $n: n \cdot f$

Model of Departments

Departments

- a department of size k is an element of $\mathscr{A}^{k}:\left(f_{1}, f_{2}, \ldots, f_{k}\right)$

Model of Departments

Departments

- a department of size k is an element of $\mathscr{A}^{k}:\left(f_{1}, f_{2}, \ldots, f_{k}\right)$

Set of all Departments

$$
\mathscr{D}=\bigcup_{k \in \mathbb{N}} \mathscr{A}^{k}
$$

Model of Departments

Departments

- a department of size k is an element of $\mathscr{A}^{k}:\left(f_{1}, f_{2}, \ldots, f_{k}\right)$

Set of all Departments

$$
\mathscr{D}=\bigcup_{k \in \mathbb{N}} \mathscr{A}^{k}
$$

Objective

- build a binary relation \unrhd on \mathscr{D}
- $A \unrhd B$ is "given their publication/citation record of the scientists in departments A and B, department A is at least as good as department B "

Model of Departments

Departments

- a department of size k is an element of $\mathscr{A}^{k}:\left(f_{1}, f_{2}, \ldots, f_{k}\right)$

Set of all Departments

$$
\mathscr{D}=\bigcup_{k \in \mathbb{N}} \mathscr{A}^{k}
$$

Objective

- build a binary relation \unrhd on \mathscr{D}
- $A \unrhd B$ is "given their publication/citation record of the scientists in departments A and B, department A is at least as good as department B "

Limitations

- multiple affiliations are ignored
- field normalization is ignored

Axioms

Consistency

Let $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ be two departments of size k.
If $a_{i} \succsim b_{i}$, for all $i \in\{1,2, \ldots, k\}$ then $A \unrhd B$
Furthermore if $a_{i} \succ b_{i}$, for some $i \in\{1,2, \ldots, k\}$ then $A \triangleright B$

Axioms

Consistency

Let $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ be two departments of size k. If $a_{i} \succsim b_{i}$, for all $i \in\{1,2, \ldots, k\}$ then $A \unrhd B$
Furthermore if $a_{i} \succ b_{i}$, for some $i \in\{1,2, \ldots, k\}$ then $A \triangleright B$

Independence

For all $f, g \in \mathscr{A}$ and all $x \in \mathbb{N}$

$$
f \succsim g \Leftrightarrow f+\mathbf{1}_{x} \succsim g+\mathbf{1}_{x}
$$

Axioms

Consistency

Let $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ and $B=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$ be two departments of size k. If $a_{i} \succsim b_{i}$, for all $i \in\{1,2, \ldots, k\}$ then $A \unrhd B$
Furthermore if $a_{i} \succ b_{i}$, for some $i \in\{1,2, \ldots, k\}$ then $A \triangleright B$

Independence

For all $f, g \in \mathscr{A}$ and all $x \in \mathbb{N}$

$$
f \succsim g \Leftrightarrow f+\mathbf{1}_{x} \succsim g+\mathbf{1}_{x}
$$

Transfer

For all $A=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathscr{D}$, all $i, j \in\{1,2, \ldots, k\}$ and all $x \in \mathbb{N}$

$$
\left(a_{1}, \ldots, a_{i}+\mathbf{1}_{x}, \ldots, a_{k}\right) \triangleq\left(a_{1}, \ldots, a_{j}+\mathbf{1}_{x}, \ldots, a_{k}\right)
$$

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
- "Inequalities" within departments are ignored

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
- "Inequalities" within departments are ignored

Proposition 1

If \succsim and \unrhd are linked by Consistency and if \unrhd satisfies Transfer then \succsim satisfies Independence

Interpretation and Results

Interpretation

- Consistency appears uncontroversial
- Independence appears uncontroversial
- Transfer is strong (but used quite often)
- "Inequalities" within departments are ignored

Proposition 1

If \succsim and \unrhd are linked by Consistency and if \unrhd satisfies Transfer then \succsim satisfies Independence

Corollary

If \succsim is the ranking of authors based on the h-index then there is no \unrhd such that Transfer and Consistency hold

Scoring rules for scientists

Definition 1

\succsim is a scoring rule for scientists (s-scoring rule) if there is a real valued function u on \mathbb{N} such that

$$
f \succsim g \Leftrightarrow \sum_{x \in \mathbb{N}} f(x) u(x) \geq \sum_{x \in \mathbb{N}} g(x) u(x)
$$

- $u(x)$ gives the worth of one publication with x citations
- many bibliometric indices are scoring rules (but not the h-index)
- all scoring rules satisfy independence

Scoring rules for scientists

Definition 1

\succsim is a scoring rule for scientists (s-scoring rule) if there is a real valued function u on \mathbb{N} such that

$$
f \succsim g \Leftrightarrow \sum_{x \in \mathbb{N}} f(x) u(x) \geq \sum_{x \in \mathbb{N}} g(x) u(x)
$$

- $u(x)$ gives the worth of one publication with x citations
- many bibliometric indices are scoring rules (but not the h-index)
- all scoring rules satisfy independence

Examples

- $u(x)=x$: number of citations
- $u(x)=1$: number of publications
- $u(x)=1$ if $x \geq \alpha$: number of highly cited publications

Rules for departments

Definition 2

\unrhd is a scoring rule for departments (d-scoring rule) if there is a real valued function v on \mathbb{N} such that

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \unrhd\left(b_{1}, b_{2}, \ldots, b_{\ell}\right) \Leftrightarrow \sum_{i=1}^{k} \sum_{x \in \mathbb{N}} a_{i}(x) v(x) \geq \sum_{i=1}^{\ell} \sum_{x \in \mathbb{N}} b_{i}(x) v(x)
$$

Rules for departments

Definition 2

\unrhd is a scoring rule for departments (d-scoring rule) if there is a real valued function v on \mathbb{N} such that

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \unrhd\left(b_{1}, b_{2}, \ldots, b_{\ell}\right) \Leftrightarrow \sum_{i=1}^{k} \sum_{x \in \mathbb{N}} a_{i}(x) v(x) \geq \sum_{i=1}^{\ell} \sum_{x \in \mathbb{N}} b_{i}(x) v(x)
$$

Definition 3

\unrhd is an averaging rule for departments (d-averaging rule) if there is a real valued function v on \mathbb{N} such that

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \unrhd\left(b_{1}, b_{2}, \ldots, b_{\ell}\right) \Leftrightarrow \frac{1}{k} \sum_{i=1}^{k} \sum_{x \in \mathbb{N}} a_{i}(x) v(x) \geq \frac{1}{\ell} \sum_{i=1}^{\ell} \sum_{x \in \mathbb{N}} b_{i}(x) v(x)
$$

Axioms

Archimedeanness

For all $f, g, f^{\prime}, g^{\prime} \in \mathscr{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f^{\prime}+(n \cdot f) \succsim g^{\prime}+(n \cdot g)$

Axioms

Archimedeanness

For all $f, g, f^{\prime}, g^{\prime} \in \mathscr{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f^{\prime}+(n \cdot f) \succsim g^{\prime}+(n \cdot g)$

Dummy Scientist

For all $k \in \mathbb{N}$ and all $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathscr{D}$

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \triangleq\left(a_{1}, a_{2}, \ldots, a_{k}, \mathbf{0}\right)
$$

Axioms

Archimedeanness

For all $f, g, f^{\prime}, g^{\prime} \in \mathscr{A}$ such that $f \succ g$ there is $n \in \mathbb{N}$ such that $f^{\prime}+(n \cdot f) \succsim g^{\prime}+(n \cdot g)$

Dummy Scientist

For all $k \in \mathbb{N}$ and all $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathscr{D}$

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \triangleq\left(a_{1}, a_{2}, \ldots, a_{k}, \mathbf{0}\right)
$$

Homogeneity

For all $k, n \in \mathbb{N}$ and all $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathscr{D}$

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right) \triangleq(\underbrace{a_{1}, a_{1}, \ldots, a_{1}}_{n}, \underbrace{a_{2}, a_{2}, \ldots, a_{2}}_{n}, \ldots, \underbrace{a_{k}, a_{k}, \ldots, a_{k}}_{n})
$$

Remarks

- all s-scoring rules satisfy Archimedeanness
- Dummy Scientist is satisfied by d-scoring rules but not by d-averaging rules
- Homogeneity is satisfied by d-averaging rules but not by d-scoring rules

Some results

Theorem 1 (B \& Marchant, 2011)

The relations \succsim and \unrhd are linked by Consistency, \unrhd satisfies Transfer and Dummy Scientist, \succsim satisfies Archimedeanness
if and only if
\succsim is an s-scoring rule and \unrhd is a d-scoring rule with $u=v$
The function u is unique up to the multiplication by a positive constant

Some results

Theorem 1 (B \& Marchant, 2011)

The relations \succsim and \unrhd are linked by Consistency, \unrhd satisfies Transfer and Dummy Scientist, \succsim satisfies Archimedeanness
if and only if
\succsim is an s-scoring rule and \unrhd is a d-scoring rule with $u=v$
The function u is unique up to the multiplication by a positive constant

Theorem 2 (B \& Marchant, 2011)

The relations \succsim and \unrhd are linked by Consistency, \unrhd satisfies Transfer and Homogeneity, \succsim satisfies Archimedeanness
if and only if
\succsim is an s-scoring rule and \unrhd is a d-averaging rule with $u=v$
The function u is unique up to the multiplication by a positive constant

Extensions

Extensions

- add additional conditions to restrict the shape of u
- u is nondecreasing
- u is constant
- u is linear

Easy!

Outline

(1) Bibliometrics

(2) Model \& Results
(3) Discussion

Discussion of results

Axioms

- Consistency is highly desirable
- Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity \& inequality)

Discussion of results

Axioms

- Consistency is highly desirable
- Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity \& inequality)

Extensions

- coauthors
- multiple affiliations
- field normalization

Discussion of results

Axioms

- Consistency is highly desirable
- Independence is highly desirable (but violated by the h-index)
- Archimedeanness is technical
- Transfer is more debatable (anonymity \& inequality)

Extensions

- coauthors
- multiple affiliations
- field normalization

Warning

- beware of institutions using the h-index!

I will not use the h-index anymore
I will not use the h-index anymore I will not use the h-index anymore I will not use the h-index anymore I will not use the h-index anymore I will not use the h-index anymore I will not use the h-index anymore
I will not use the h-index anymore
I will not use the h-index anymore
I will not use the h-index anymore I will not use the h-index anymore

Messages

Bibliometrics

- bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Messages

Bibliometrics

- bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Evaluative bibliometrics in practice

- it should be used with much care
- it should not be in the hands of laypersons
- it should not be entrenched in formal rules
- it can be useful if used together with careful and impartial peer review

Messages

Bibliometrics

- bibliometrics is not limited to evaluative bibliometrics
- evaluative bibliometrics is an interesting field of study
- many wrong beliefs are floating around

Evaluative bibliometrics in practice

- it should be used with much care
- it should not be in the hands of laypersons
- it should not be entrenched in formal rules
- it can be useful if used together with careful and impartial peer review

Excellence: IDEX, LABEX, PES

- excellence is another word for outliers
- not everyone can be excellent!
- what should we do with people that are not excellent?
- is the mantra of excellence a good motivating tool?

References

國 Adler，R．，Ewing，J．，Taylor，P．（2009）
Citation statistics
Statistical Science， 24 （1），1－14
R Billaut，J．－C．，Bouyssou，D．，Vincke，Ph．（2011）
Should you believe in the Shanghai ranking？An MCDM view
Scientometrics， 84 （1），237－263
國 Bouyssou，D．，Marchant，T．（2011）
Ranking scientists and departments in a consistent manner
Journal of the American Society for Information Science and Technology， 62 （9）， 1761－1769
T－Bouyssou，D．，Marchant，T．（2013）
New characterizations of the h－index
Working Paper，LAMSADE， 54 pages
國 Marchant，T．（2009）
Score－Based Bibliometric Rankings of Authors
Journal of the American Society for Information Science and Technology， 60 （6）， 1132－1137

